TENSOR - traduction vers arabe
DICLIB.COM
Outils linguistiques IA
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:     

Traduction et analyse des mots par intelligence artificielle

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

TENSOR - traduction vers arabe

MULTILINEAR MAP ON SOME COMBINATION OF SCALARS, VECTORS, COVECTORS, AND TENSORS
Tensors; Tensor/Alternate; Application of tensor theory in engineering; Intermediate treatment of tensors; Tensor-classical; Classical treatment of tensors; Tensor equation; Tensor equations; Tensor transformation law; Tensor Standard Form; Tensor mechanics; Multilinear operator; Application of tensor theory in physics; Application of tensor theory in engineering science; Tensors in physics; Tensor index; Tensor transformations; Tensor order; Hypermatrix; Zerotensor; Tensor space; Tensor degree; Tensor on a vector space; Tensor (mathematics)
  • The second-order [[Cauchy stress tensor]] <math>\mathbf{T}</math> describes the stress experienced by a material at a given point. For any unit vector <math>\mathbf{v}</math>, the product <math>\mathbf{T} \cdot \mathbf{v}</math> is a vector, denoted <math>\mathbf{T}(\mathbf{v})</math>, that quantifies the force per area along the plane perpendicular to <math>\mathbf{v}</math>. This image shows, for cube faces perpendicular to <math>\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3</math>, the corresponding stress vectors <math>\mathbf{T}(\mathbf{e}_1), \mathbf{T}(\mathbf{e}_2), \mathbf{T}(\mathbf{e}_3)</math> along those faces. Because the stress tensor takes one vector as input and gives one vector as output, it is a second-order tensor.

TENSOR         

ألاسم

شَادَّة

tensor         
مُوَتِّرَة ; شادَّة (عضلة)
tensor         
‎ مُوَتِّرَة ; شادَّة:عضلة‎

Définition

tensor
['t?ns?, -s?:]
¦ noun
1. Mathematics a generalized form of vector represented by an array of components that are functions of spatial coordinates.
2. Anatomy a muscle that tightens or stretches a part of the body.
Derivatives
tensorial adjective
Origin
C18: mod. L., from L. tendere 'to stretch'.

Wikipédia

Tensor

In mathematics, a tensor is an algebraic object that describes a multilinear relationship between sets of algebraic objects related to a vector space. Tensors may map between different objects such as vectors, scalars, and even other tensors. There are many types of tensors, including scalars and vectors (which are the simplest tensors), dual vectors, multilinear maps between vector spaces, and even some operations such as the dot product. Tensors are defined independent of any basis, although they are often referred to by their components in a basis related to a particular coordinate system.

Tensors have become important in physics because they provide a concise mathematical framework for formulating and solving physics problems in areas such as mechanics (stress, elasticity, fluid mechanics, moment of inertia, ...), electrodynamics (electromagnetic tensor, Maxwell tensor, permittivity, magnetic susceptibility, ...), general relativity (stress–energy tensor, curvature tensor, ...) and others. In applications, it is common to study situations in which a different tensor can occur at each point of an object; for example the stress within an object may vary from one location to another. This leads to the concept of a tensor field. In some areas, tensor fields are so ubiquitous that they are often simply called "tensors".

Tullio Levi-Civita and Gregorio Ricci-Curbastro popularised tensors in 1900 – continuing the earlier work of Bernhard Riemann and Elwin Bruno Christoffel and others – as part of the absolute differential calculus. The concept enabled an alternative formulation of the intrinsic differential geometry of a manifold in the form of the Riemann curvature tensor.